Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2304243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160244

RESUMO

2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as-grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well-defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness-dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba-Edelstein effect (IREE) in 1-3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.

2.
Nano Lett ; 22(23): 9260-9267, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36394996

RESUMO

Multilayers based on quantum materials (complex oxides, topological insulators, transition-metal dichalcogenides, etc.) have enabled the design of devices that could revolutionize microelectronics and optoelectronics. However, heterostructures incorporating quantum materials from different families remain scarce, while they would immensely broaden the range of possible applications. Here we demonstrate the large-scale integration of compounds from two highly multifunctional families: perovskite oxides and transition-metal dichalcogenides (TMDs). We couple BiFeO3, a room-temperature multiferroic oxide, and WSe2, a semiconducting two-dimensional material with potential for photovoltaics and photonics. WSe2 is grown by molecular beam epitaxy and transferred on a centimeter-scale onto BiFeO3 films. Using angle-resolved photoemission spectroscopy, we visualize the electronic structure of 1 to 3 monolayers of WSe2 and evidence a giant energy shift as large as 0.75 eV induced by the ferroelectric polarization direction in the underlying BiFeO3. Such a strong shift opens new perspectives in the efficient manipulation of TMD properties by proximity effects.

3.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36252554

RESUMO

Nearly localized moiré flat bands in momentum space, arising at particular twist angles, are the key to achieve correlated effects in transition-metal dichalcogenides. Here, we use angle-resolved photoemission spectroscopy (ARPES) to visualize the presence of a flat band near the Fermi level of van der Waals WSe2/MoSe2heterobilayer grown by molecular beam epitaxy. This flat band is localized near the Fermi level and has a width of several hundred meVs. By combining ARPES measurements with density functional theory calculations, we confirm the coexistence of different domains, namely the reference 2H stacking without layer misorientation and regions with arbitrary twist angles. For the 2H-stacked heterobilayer, our ARPES results show strong interlayer hybridization effects, further confirmed by complementary micro- Raman spectroscopy measurements. The spin-splitting of the valence band atKis determined to be 470 meV. The valence band maximum (VBM) position of the heterobilayer is located at the Γ point. The energy difference between the VBM at Γ and theKpoint is of -60 meV, which is a stark difference compared to individual single monolayer WSe2and monolayer WSe2, showing both a VBM atK.

4.
Nanoscale ; 14(15): 5859-5868, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35362486

RESUMO

Two-dimensional materials (2D) arranged in hybrid van der Waals (vdW) heterostructures provide a route toward the assembly of 2D and conventional III-V semiconductors. Here, we report the structural and electronic properties of single layer WSe2 grown by molecular beam epitaxy on Se-terminated GaAs(111)B. Reflection high-energy electron diffraction images exhibit sharp streaky features indicative of a high-quality WSe2 layer produced via vdW epitaxy. This is confirmed by in-plane X-ray diffraction. The single layer of WSe2 and the absence of interdiffusion at the interface are confirmed by high resolution X-ray photoemission spectroscopy and high-resolution transmission microscopy. Angle-resolved photoemission investigation revealed a well-defined WSe2 band dispersion and a high p-doping coming from the charge transfer between the WSe2 monolayer and the Se-terminated GaAs substrate. By comparing our results with local and hybrid functionals theoretical calculation, we find that the top of the valence band of the experimental heterostructure is close to the calculations for free standing single layer WSe2. Our experiments demonstrate that the proximity of the Se-terminated GaAs substrate can significantly tune the electronic properties of WSe2. The valence band maximum (VBM, located at the K point of the Brillouin zone) presents an upshift of about 0.56 eV toward the Fermi level with respect to the VBM of the WSe2 on graphene layer, which is indicative of high p-type doping and a key feature for applications in nanoelectronics and optoelectronics.

5.
Nanotechnology ; 31(25): 255602, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187582

RESUMO

The search for high-quality transition metal dichalcogenides mono- and multi-layers grown on large areas is still a very active field of investigation. Here, we use molecular beam epitaxy to grow WSe2 on 15 × 15 mm large mica in the van der Waals regime. By screening one-step growth conditions, we find that very high temperature (>900 °C) and very low deposition rate (<0.15 Å min-1) are necessary to obtain high quality WSe2 films. The domain size can be as large as 1 µm and the in-plane rotational misorientation of 1.25°. The WSe2 monolayer is also robust against air exposure, can be easily transferred over 1 cm2 on SiN/SiO2 and exhibits strong photoluminescence signal. Moreover, by combining grazing incidence x-ray diffraction and transmission electron microscopy, we could detect the presence of few misoriented grains. A two-dimensional model based on atomic coincidences between the WSe2 and mica crystals allows us to explain the formation of these misoriented grains and gives insight to achieve highly crystalline WSe2.

6.
Nat Commun ; 10(1): 5796, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857586

RESUMO

The Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst (-Ettingshausen) effect. The recently discovered spin Nernst effect in heavy metals continues to enrich the picture of Nernst effect-related phenomena. However, the collection would not be complete without mentioning the valley degree of freedom benchmarked by the valley Hall effect. Here we show the experimental evidence of its missing counterpart, the valley Nernst effect. Using millimeter-sized WSe[Formula: see text] mono-multi-layers and the ferromagnetic resonance-spin pumping technique, we are able to apply a temperature gradient by off-centering the sample in the radio frequency cavity and address a single valley through spin-valley coupling. The combination of a temperature gradient and the valley polarization leads to the valley Nernst effect in WSe[Formula: see text] that we detect electrically at room temperature. The valley Nernst coefficient is in good agreement with the predicted value.

7.
Nanotechnology ; 29(42): 425706, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30052205

RESUMO

In this work, we study growth and migration of atomic defects in MoSe2 on graphene using multiple advanced transmission electron microscopy techniques to explore defect behavior in vdW heterostructures. A MoSe2/graphene vdW heterostructure is prepared by a direct growth of both monolayers, thereby attaining an ideal vdW interface between the monolayers. We investigate the intrinsic defects (inversion domains and grain boundaries) in synthesized MoSe2, their evolution amid growth processing steps, and their influence on the formation and movement of extrinsic defects. Electron diffraction identifies a preferential interlayer orientation of 2° between MoSe2 and graphene, which is caused by the presence of intrinsic IBD defects. Extrinsic defects (point and line defects) are generated by in situ electron irradiation in the MoSe2 layer. Our results shed light on how to independently modify the MoSe2 atomic structure in vdW heterostructures for potential utilization in device processing.

8.
ACS Nano ; 12(3): 2319-2331, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29384649

RESUMO

Van der Waals heterojunctions composed of graphene and transition metal dichalcogenides have gain much attention because of the possibility to control and tailor band structure, promising applications in two-dimensional optoelectronics and electronics. In this report, we characterized the van der Waals heterojunction MoSe2/few-layer graphene with a high-quality interface using cutting-edge surface techniques scaling from atomic to microscopic range. These surface analyses gave us a complete picture of the atomic structure and electronic properties of the heterojunction. In particular, we found two important results: the commensurability between the MoSe2 and few-layer graphene lattices and a band-gap opening in the few-layer graphene. The band gap is as large as 250 meV, and we ascribed it to an interface charge transfer that results in an electronic depletion in the few-layer graphene. This conclusion is well supported by electron spectroscopy data and density functional theory calculations. The commensurability between the MoSe2 and graphene lattices as well as the band-gap opening clearly show that the interlayer interaction goes beyond the simple van der Waals interaction. Hence, stacking two-dimensional materials in van der Waals heterojunctions enables us to tailor the atomic and electronic properties of individual layers. It also permits the introduction of a band gap in few-layer graphene by interface charge transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...